Part Number Hot Search : 
UF804 TC9215A 826M0 63D17 UF804 PJL9452A TA0797A KMP8400
Product Description
Full Text Search
 

To Download FDB035AN06A0 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FDB035AN06A0
July 2002
FDB035AN06A0
N-Channel PowerTrench(R) MOSFET 60V, 80A, 3.5m
Features
* r DS(ON) = 3.2m (Typ.), V GS = 10V, ID = 80A * Qg(tot) = 95nC (Typ.), VGS = 10V * Low Miller Charge * Low Qrr Body Diode * UIS Capability (Single Pulse and Repetitive Pulse) * Qualified to AEC Q101
Formerly developmental type 82584
Applications
* Motor / Body Load Control * ABS Systems * Powertrain Management * Injection Systems * DC-DC converters and Off-line UPS * Distributed Power Architectures and VRMs * Primary Switch for 12V and 24V systems
D
GATE
G
SOURCE TO-263AB FDB SERIES DRAIN (FLANGE)
S
MOSFET Maximum Ratings TC = 25C unless otherwise noted
Symbol VDSS VGS Parameter Drain to Source Voltage Gate to Source Voltage Drain Current ID Continuous (TC < 153oC, VGS = 10V) Continuous (Tamb = 25oC, VGS = 10V, with RJA = 43oC/W) Pulsed E AS PD TJ, TSTG Single Pulse Avalanche Energy (Note 1) Power dissipation Derate above 25oC Operating and Storage Temperature 80 22 Figure 4 625 310 2.07 -55 to 175 A A A mJ W W/oC
o
Ratings 60 20
Units V V
C
Thermal Characteristics
RJC RJA RJA Thermal Resistance Junction to Case TO-263 Thermal Resistance Junction to Ambient TO-263, (Note 2) Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area 0.48 62 43
o o o
C/W C/W C/W
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
(c)2002 Fairchild Semiconductor Corporation
FDB035AN06A0 Rev. A
FDB035AN06A0
Package Marking and Ordering Information
Device Marking FDB035AN06A0 Device FDB035AN06A0 Package TO-263AB Reel Size 330mm Tape Width 24mm Quantity 800 units
Electrical Characteristics TC = 25C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
BVDSS IDSS IGSS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current ID = 250A, VGS = 0V VDS = 50V VGS = 0V VGS = 20V TC = 150oC 60 1 250 100 V A nA
On Characteristics
VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250A ID = 80A, VGS = 10V rDS(ON) Drain to Source On Resistance ID = 40A, VGS = 6V ID = 80A, VGS = 10V, TJ = 175oC 2 4 V 0.0032 0.0035 0.0044 0.0066 0.0065 0.0071
Dynamic Characteristics
CISS COSS CRSS Qg(TOT) Qg(TH) Qgs Qgs2 Qgd Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Gate Charge Threshold to Plateau Gate to Drain "Miller" Charge VDS = 25V, VGS = 0V, f = 1MHz VGS = 0V to 10V VGS = 0V to 2V VDD = 30V ID = 80A Ig = 1.0mA 6400 1123 367 95 12 30 18 24 124 15 pF pF pF nC nC nC nC nC
Switching Characteristics (VGS = 10V)
tON td(ON) tr td(OFF) tf tOFF Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 30V, ID = 80A VGS = 10V, RGS = 2.4 15 93 38 13 163 75 ns ns ns ns ns ns
Drain-Source Diode Characteristics
VSD trr QRR Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ISD = 80A ISD = 40A ISD = 75A, dISD/dt = 100A/s ISD = 75A, dISD/dt = 100A/s 1.25 1.0 38 39 V V ns nC
Notes: 1: Starting TJ = 25C, L = 0.255mH, IAS = 70A. 2: Pulse Width = 100s
(c)2002 Fairchild Semiconductor Corporation
FDB035AN06A0 Rev. A
FDB035AN06A0
Typical Characteristics TC = 25C unless otherwise noted
1.2 250 CURRENT LIMITED BY PACKAGE
POWER DISSIPATION MULTIPLIER
1.0 ID, DRAIN CURRENT (A) 200
0.8
150
0.6
100
0.4
0.2
50
0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (o C)
0 25
50
75
100
125 (o C)
150
175
TC, CASE TEMPERATURE
Figure 1. Normalized Power Dissipation vs Ambient Temperature
2 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01
Figure 2. Maximum Continuous Drain Current vs Case Temperature
ZJC, NORMALIZED THERMAL IMPEDANCE
PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101
SINGLE PULSE 0.01 10-5 10-4
Figure 3. Normalized Maximum Transient Thermal Impedance
3000 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 VGS = 10V 100 175 - TC 150
1000 IDM, PEAK CURRENT (A)
10 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
Figure 4. Peak Current Capability
(c)2002 Fairchild Semiconductor Corporation
FDB035AN06A0 Rev. A
FDB035AN06A0
Typical Characteristics TC = 25C unless otherwise noted
2000 1000 100s ID, DRAIN CURRENT (A) 100 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) IAS, AVALANCHE CURRENT (A) STARTING TJ = 25oC 10s 100
STARTING TJ = 150oC 10
10
10ms 1 SINGLE PULSE TJ = MAX RATED TC = 25oC 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) DC
If R = 0 tAV = (L)(I AS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 100
0.1
100
Figure 5. Forward Bias Safe Operating Area
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching Capability
160 VGS = 20V VGS = 10V
160
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V ID, DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
120
120 VGS = 6V VGS = 5V 80
80
TJ = 175 oC
40
TJ = 25o C TJ = -55 C
o
40 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 0
TC = 25o C 1.5
0 3.0 3.5 4.0 4.5 5.0 5.5 VGS , GATE TO SOURCE VOLTAGE (V) 6
0
0.5 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics
5 DRAIN TO SOURCE ON RESISTANCE(m) NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 2.5
Figure 8. Saturation Characteristics
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 2.0
VGS = 6V
4
1.5
VGS = 10V
1.0
3 0 20 40 ID, DRAIN CURRENT (A) 60 80
VGS = 10V, ID =80A 0.5 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200
Figure 9. Drain to Source On Resistance vs Drain Current
Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature
(c)2002 Fairchild Semiconductor Corporation
FDB035AN06A0 Rev. A
FDB035AN06A0
Typical Characteristics TC = 25C unless otherwise noted
1.4 VGS = VDS, I D = 250A 1.2 NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 ID = 250A
1.0
1.1
0.8
0.6
1.0
0.4
0.2 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (o C)
Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature
10000
Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature
10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 30V 8
CISS = CGS + CGD C, CAPACITANCE (pF) COSS C DS + C GD
6
1000
CRSS = CGD
4 WAVEFORMS IN DESCENDING ORDER: ID = 80A ID = 40A 0 25 50 Qg , GATE CHARGE (nC) 75 100
2
VGS = 0V, f = 1MHz 100 0.1 1 10 60 VDS , DRAIN TO SOURCE VOLTAGE (V)
0
Figure 13. Capacitance vs Drain to Source Voltage
Figure 14. Gate Charge Waveforms for Constant Gate Current
(c)2002 Fairchild Semiconductor Corporation
FDB035AN06A0 Rev. A
FDB035AN06A0
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP 0V RG IAS VDD VDD tP VDS
+
IAS 0.01 0 tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS VDD L VGS VDS Qg(TOT) VGS
VGS = 10V
+
VDD DUT Ig(REF) VGS = 2V 0
Qgs2
Qg(TH) Qgs Ig(REF) 0 Qgd
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON td(ON) RL VDS 90% tr
tOFF td(OFF) tf 90%
VGS
+
VDD DUT 0
10%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH
90% 50%
Figure 19. Switching Time Test Circuit
Figure 20. Switching Time Waveforms
(c)2002 Fairchild Semiconductor Corporation
FDB035AN06A0 Rev. A
FDB035AN06A0
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM , in an application. Therefore the application's ambient temperature, TA (oC), and thermal resistance RJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.
(T -T ) JM A P D M = ----------------------------R JA
80 RJA = 26.51+ 19.84/(0.262+Area) EQ.2 RJA = 26.51+ 128/(1.69+Area) EQ.3 60 RJA (o C/W) 40 20 0.1 (0.645) 1 (6.45) AREA, TOP COPPER AREA in2 (cm2 ) 10 (64.5)
(EQ. 1)
In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P DM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the RJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. R JA
Figure 21. Thermal Resistance vs Mounting Pad Area
= 26.51 + ------------------------------------
19.84 ( 0.262 + Area )
(EQ. 2)
Area in Inches Squared
R
JA
= 26.51 + ---------------------------------
128 ( 1.69 + Area )
(EQ. 3)
Area in Centimeters Squared
(c)2002 Fairchild Semiconductor Corporation
FDB035AN06A0 Rev. A
FDB035AN06A0
PSPICE Electrical Model
.SUBCKT FDB035AN06A0 2 1 3 ; rev July 04, 2002 Ca 12 8 1.5e-9 Cb 15 14 1.5e-9 Cin 6 8 6.1e-9 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD Ebreak 11 7 17 18 69.3 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 Lgate 1 9 4.81e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 4.63e-9 RLgate 1 9 48.1 RLdrain 2 5 10 RLsource 3 7 46.3 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 1e-4 Rgate 9 20 1.36 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 2.5e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),10))} .MODEL DbodyMOD D (IS=2.4E-11 N=1.04 RS=1.65e-3 TRS1=2.7e-3 TRS2=2e-7 + CJO=4.35e-9 M=5.4e-1 TT=1e-9 XTI=3.9) .MODEL DbreakMOD D (RS=1.5e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=1.7e-9 IS=1e-30 N=10 M=0.47) .MODEL MmedMOD NMOS (VTO=3.3 KP=9 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.36 T_abs=25) .MODEL MstroMOD NMOS (VTO=4.00 KP=275 IS=1e-30 N=10 TOX=1 L=1u W=1u T_abs=25) .MODEL MweakMOD NMOS (VTO=2.72 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=13.6 RS=0.1 T_abs=25) .MODEL RbreakMOD RES (TC1=9e-4 TC2=-9e-7) .MODEL RdrainMOD RES (TC1=4e-2 TC2=1.75e-4) .MODEL RSLCMOD RES (TC1=1e-3 TC2=1e-5) .MODEL RsourceMOD RES (TC1=5e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-6.7e-3 TC2=-1.5e-5) .MODEL RvtempMOD RES (TC1=-2.5e-3 TC2=1e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-1.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.5 VOFF=-1). ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
CA S1A 12 13 8 S1B 13 + EGS 6 8 EDS S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT 15 17 GATE 1 RLGATE CIN 10 RSLC1 51 ESLC 50 RDRAIN EVTHRES + 19 8 6 MSTRO LSOURCE 8 RSOURCE RLSOURCE RBREAK 18 RVTEMP 19 VBAT + 22 7 SOURCE 3 21 16 RLDRAIN DBREAK 11 + 17 EBREAK 18 MWEAK MMED LDRAIN DPLCAP 5 DRAIN 2
RSLC2
5 51 ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 -
(c)2002 Fairchild Semiconductor Corporation
+
DBODY
FDB035AN06A0 Rev. A
FDB035AN06A0
SABER Electrical Model
rev July 4, 2002 template FDB035AN06A0 n2,n1,n3 = m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=2.4e-11,nl=1.04,rs=1.65e-3,trs1=2.7e-3,trs2=2e-7,cjo=4.35e-9,m=5.4e-1,tt=1e-9,xti=3.9) dp..model dbreakmod = (rs=1.5e-1,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.7e-9,isl=10e-30,nl=10,m=0.47) m..model mmedmod = (type=_n,vto=3.3,kp=9,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.00,kp=275,is=1e-30, tox=1) LDRAIN m..model mweakmod = (type=_n,vto=2.72,kp=0.03,is=1e-30, tox=1,rs=0.1) DPLCAP 5 DRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-1.5) 2 10 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-4) RLDRAIN sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=0.5) RSLC1 51 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1) RSLC2 c.ca n12 n8 = 1.5e-9 ISCL c.cb n15 n14 = 1.5e-9 c.cin n6 n8 = 6.1e-9 DBREAK 50
-
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 69.3 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1 l.lgate n1 n9 = 4.81e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 4.63e-9 res.rlgate n1 n9 = 48.1 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 46.3
GATE 1
ESG + LGATE EVTEMP RGATE + 18 22 9 20
6 8
RDRAIN EVTHRES + 19 8 6 MSTRO CIN 8 21 16
11 DBODY MWEAK
MMED
RLGATE
EBREAK + 17 18 -
LSOURCE 7 RLSOURCE
SOURCE 3
RSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19
m.mmed n16 n6 n8 n8 = model=mmedmod, temp=m_temp, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, temp=m_temp, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, temp=m_temp, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=9e-4,tc2=-9e-7 res.rdrain n50 n16 = 1e-4, tc1=4e-2,tc2=1.75e-4 res.rgate n9 n20 = 1.36 res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=1e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.5e-3, tc1=5e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-6.7e-3,tc2=-1.5e-5 res.rvtemp n18 n19 = 1, tc1=-2.5e-3,tc2=1e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 10)) }
(c)2002 Fairchild Semiconductor Corporation
FDB035AN06A0 Rev. A
FDB035AN06A0
PSPICE Thermal Model
REV 23 July 4, 2002 FDB035AN06A0T CTHERM1 TH 6 6.45e-3 CTHERM2 6 5 3e-2 CTHERM3 5 4 1.4e-2 CTHERM4 4 3 1.65e-2 CTHERM5 3 2 4.85e-2 CTHERM6 2 TL 1e-1 RTHERM1 TH 6 3.24e-3 RTHERM2 6 5 8.08e-3 RTHERM3 5 4 2.28e-2 RTHERM4 4 3 1e-1 RTHERM5 3 2 1.1e-1 RTHERM6 2 TL 1.4e-1
th JUNCTION
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model FDB035AN06A0T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =6.45e-3 ctherm.ctherm2 6 5 =3e-2 ctherm.ctherm3 5 4 =1.4e-2 ctherm.ctherm4 4 3 =1.65e-2 ctherm.ctherm5 3 2 =4.85e-2 ctherm.ctherm6 2 tl =1e-1 rtherm.rtherm1 th 6 =3.24e-3 rtherm.rtherm2 6 5 =8.08e-3 rtherm.rtherm3 5 4 =2.28e-2 rtherm.rtherm4 4 3 =1e-1 rtherm.rtherm5 3 2 =1.1e-1 rtherm.rtherm6 2 tl=1.4e-1
RTHERM3 CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
(c)2002 Fairchild Semiconductor Corporation
FDB035AN06A0 Rev. A
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
FACTTM ACExTM FACT Quiet SeriesTM ActiveArrayTM FAST(R) BottomlessTM CoolFETTM FASTrTM CROSSVOLTTM FRFETTM DOMETM GlobalOptoisolatorTM EcoSPARKTM GTOTM E2CMOSTM HiSeCTM I2CTM EnSignaTM Across the board. Around the world.TM The Power FranchiseTM
ImpliedDisconnectTM ISOPLANARTM LittleFETTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXProTM OPTOLOGIC(R) OPTOPLANARTM
PACMANTM POPTM Power247TM PowerTrench(R) QFETTM QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM SILENT SWITCHER(R) SMART STARTTM
SPMTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogicTM TruTranslationTM UHCTM UltraFET(R) VCXTM
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Advance Information Product Status Formative or In Design First Production Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Preliminary
No Identification Needed
Full Production
Obsolete
Not In Production
Rev. I


▲Up To Search▲   

 
Price & Availability of FDB035AN06A0

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X